RESEARCH ARTICLE

OPEN ACCESS

On The Number of Representations of a Positive Integer By Certain Binary Quadratic Forms Belonging To Multi-Class Genera

TEIMURAZ VEPKHVADZE

(Department of Mathematics, Iv. Javakhishvili Tbilisi State University, Georgia,

Abstract

It is well known how to find the formulae for the number of representations of positive integers by the positive binary quadratic forms which belong to one-class genera. In this paper we obtain the formulae for the number of representations by certain binary forms with discriminants -80 and -128 belonging to the genera having two classes.

(2)

Key words - positive integer, binary form, genera, number of representations.

I. Introduction

Let r(n; f) denote a number of representations of a positive integer *n* by a positive definite quadratic form *f* with a number of variables *s*. It is well known that, for case s > 4, r(n; f) can be represented as

$$r(n; f) = \rho(n; f) + \nu(n; f),$$

where $\rho(n; f)$ is a "singular series" and $\nu(n; f)$ is a Fourier coefficient of cusp form. This can be expressed in terms of the theory of modular forms by stating that

$$\begin{aligned} \mathcal{G}(\tau; f) &= E(\tau; f) + X(\tau), \end{aligned} \tag{1} \\ \mathcal{G}(\tau; f) &= 1 + \sum_{n=1}^{\infty} r(n; f) Q^n, \end{aligned}$$

where $\tau \in H = \{\tau : \operatorname{Im} \tau > 0\}, Q = e^{2\pi i \tau}, X(\tau)$ is a cusp form and

$$E(\tau, f) = 1 + \sum_{n=1}^{\infty} \rho(n; f) Q^n$$

is the Eisenstein series corresponding to f. Siegel [1] proved that if the number of variables of a quadratic form f is s > 4, then

$$E(\tau; f) = F(\tau; f),$$

where $F(\tau; f)$ denote a theta-series of a genus containing a primitive quadratic form f (both positive-definite and indefinite).

From formula (2) follows the well-known Siegel's theorem [1]: the sum of the singular series corresponding to the quadratic form f is equal to the average number of representations of a natural number by a genus that contains the form f.

Later Ramanathan [2] proved that for any primitive integral quadratic form with $s \ge 3$ variables (except for zero forms with variables s = 3 and zero forms

with variables s = 4 whose discriminant is a perfect square), there is a function

$$E(\tau, z; f) = 1 + \frac{e^{\frac{(2m-s)\pi i}{4}}}{|d|^{\frac{1}{2}}} \times \sum_{q=1}^{\infty} \frac{S(f H; q)}{\frac{1}{2}} \frac{S(f H; q)}{q^{\frac{1}{2}}(q\tau - H)^{\frac{m}{2}}(q\overline{\tau} - H)^{\frac{s-m}{2}}} |q\tau - H|^{z}$$

which he called the Eisenstein-Siegel series and which is regular for any fixed τ when $\text{Im} \tau > 0$ and

 $\operatorname{Re} z > 2 - \frac{s}{2}$, analytically extendable in a

neighborhood of z = 0, and that

$$F(\tau; f) = E(\tau, z; f)|_{z=0}$$
(3)

Here *m* and *d* are respectively the inertia index and discriminant of *f*, S(fH;q) is the Gaussian sum. For s > 4 the function $E(\tau, z; f)|_{z=0}$ coincides with the function $E(\tau, f)$ and the formula (3) with Siegel's formula (2).

In [3] we proved that the function $E(\tau, z; f)$ is analytically extendable in a neighborhood of z = 0also in the case where f is any nonzero integral binary quadratic form and that $F(\tau; f) = \frac{1}{2}E(\tau, z; f)|_{z=0}$ further, having defined the Eisenstein's series $E(\tau, f)$ by the formulas

$$E(\tau; f) = \frac{1}{2} E(\tau, z; f) \big|_{z=0} \text{ for } s = 2 \text{ and}$$

$$E(\tau; f) = E(\tau, z; f) \big|_{z=0} \text{ for } s > 2, \text{ we have}$$

$$E(\tau, f) = 1 + \frac{1}{2} \sum_{n=12}^{\infty} \rho(n; f) Q^n \text{ for } s = 2 \text{ and}$$

 $E(\tau, f) = 1 + \sum_{n=1}^{\infty} \rho(n; f) Q^n$ for s > 2. Moreover,

convenient formulas are obtained for calculating of values of the function $\rho(n; f)$ in the case where *f* is any positive integral form of variables $s \ge 2$ [4], [5].

Thus, if the genus of the quadratic form f contains one class, then according to Siegel's theorem,

$$r(n; f) = = \rho(n; f)$$
 for $s \ge 3$, $r(n; f) = \frac{1}{2}\rho(n; f)$

for s = 2 and in that case the problem for obtaining "exact" formulas for r(n; f) is solved completely.

Some papers are devoted to the case of multi-class genera. For example Van der Blij [6], Lomadze [7], Vepkhvadze [5] have obtained formulae for r(n; f) for certain special binary forms, which belong to multi-class genera. In most cases their formulae for r(n; f) depend upon the coefficients in the expansion of certain products of theta functions.

In this paper we obtain formulae for the number of representations by the binary quadratic forms

 $3x_1^2 + 2x_1x_2 + 7x_2^2$, $3x_1^2 - 2x_1x_2 + 7x_2^2$, $3x_1^2 + 2x_1x_2 + 11x_2^2$ and $3x_1^2 - 2x_1x_2 + 11x_2^2$ belonging to the two-class genera.

II. Preliminaries

Below in this paper n, κ , ν , ω are positive integers; l, \mathfrak{a} , α , β are non-negative integers; u is an odd positive integer, m, h are integers, p is a prime number; $\left(\frac{h}{u}\right)$ is a Legendre-Jacobi symbol; r(n; f)

denote the number of representations of *a* positive integer *n* by the positive binary quadratic form *f* with determinant Δ .

Lemma 1 ([4], Lemma 14). Let

$$L(\kappa;m) = \sum_{u=1}^{\infty} \left(\frac{m}{u}\right) \frac{1}{u^{\kappa}},$$

 ω is a square-free integer. Then

$$L(1,-\omega) = \frac{\pi}{4} \text{ if } \omega = 1;$$

$$= \frac{\pi}{\omega^{1/2}} \sum_{1 \le h \le \frac{\omega}{4}} \left(\frac{h}{\omega}\right) \text{ if } \omega \equiv 1 \pmod{4},$$

$$\omega > 1,$$

$$= \frac{\pi}{2\omega^{1/2}} \sum_{1 \le h \le \frac{\omega}{2}} \left(\frac{h}{\omega}\right) \text{ if } \omega \equiv 3 \pmod{4},$$

$$= \frac{\pi}{2^{3/2}} \text{ if } \omega = 2,$$

$$= \frac{\pi}{\omega^{1/2}} \left\{ \sum_{1 \le h \le \frac{\omega}{16}} \left(\frac{h}{\frac{1}{2}\omega} \right) - \sum_{\frac{3\omega}{16} < h \le \frac{\omega}{4}} \left(\frac{h}{\frac{1}{2}\omega} \right) \right\}$$

if $\omega \equiv 2 \pmod{3}$, $\omega > 2$,

$$= \frac{\pi}{\omega^{1/2}} \sum_{\frac{\omega}{16} < h \le \frac{3\omega}{16}} \left| \frac{h}{\frac{1}{2}\omega} \right| \text{ if } \omega \equiv 6 \pmod{8}.$$

Lemma 2 ([4], **Theorem** 2). Let $f = ax^2 + 2bxy + cy^2$ is a positive binary quadratic form with determinant $\Delta = ac - b^2$, (a, 2b, c) = 1, $(a, 2\Delta) = 1$, $\Delta = r^2 \omega$, $\Delta = 2^{\infty} \Delta_1(2i\Delta_1)$, $p^l || \Delta$, $p^{\beta} || n \cdot \rho(n; f)$ is a "sum of a generalized singular series" corresponding to f, $n = 2^{\alpha}m$, p > 2, $p^l || \Delta$, $p^{\beta} || n$, $u = \prod_{\substack{p|n \\ p \neq 2\Delta}} p^{\beta}$. Then

$$\rho(n;f) = \frac{\pi \chi_2 \prod_{p/\Delta, p>2} \chi_p \sum_{\nu|\mu} \left(\frac{-\Delta}{\nu}\right)}{\Delta^{1/2} \prod_{p|\tau, p>2} \left(1 - \left(\frac{-\omega}{p}\right) \frac{1}{p} L(1, -\omega)\right)}$$

where

 $\chi_2 = 2^{\frac{1}{2}\alpha+2}, \quad \text{if} \quad 2|\alpha, \quad 0 \le \alpha \le \alpha-3, \quad 2|\alpha,$ $m \equiv a \pmod{8};$

 $=0, \qquad \text{if} \quad 2|\alpha, \quad 0 \le \alpha \le \alpha = 3, \quad 2|\alpha, \\ m \ne a \pmod{8},$

or
$$0 \le \alpha \le \mathfrak{E} - 1$$
, $2l\alpha$;
= $\left(1 + (-1)^{\frac{m-a}{2}}\right)2^{\frac{1}{2}\mathfrak{E}}$, if $2|\mathfrak{E}, \alpha = \mathfrak{E} - 2$;
= $\left(1 + (-1)^{\frac{1}{2}(m-a)}\right)2^{\frac{1}{2}\mathfrak{E}}$, if $2|\mathfrak{E}, \alpha \ge \mathfrak{E}, 2|\alpha$,

$$\Delta_1 \equiv 1 \pmod{4};$$

$$=2^{\frac{1}{2}\varpi}, \quad \text{if } 2|\varpi, \ \alpha = \varpi, \ \Delta_{1} \equiv -1 \pmod{4};$$
$$= \left(2 - (-1)^{\frac{1}{4}(\Delta_{1}+1)}\right)2^{\frac{1}{2}\varpi} + \left(1 + (-1)^{\frac{1}{4}(\Delta_{1}+1)}\right)(\alpha - \varpi - 2)2^{\frac{1}{2}\varpi - 1}$$

if
$$2|\alpha, \alpha > \boldsymbol{\mathfrak{E}}, 2|\alpha, \Delta_1 \equiv -1 \pmod{4}$$
;
= $\left(1 + (-1)^{\frac{1}{4}(\Delta_1 - 1) + \frac{1}{2}(m-\alpha)}\right) 2^{\frac{1}{2}\boldsymbol{\mathfrak{E}}}$, if $2|\alpha, \alpha \geq \boldsymbol{\mathfrak{E}} + 1$,
 $\alpha \geq \boldsymbol{\mathfrak{E}} + 1$,
 $2^{\frac{1}{4}\alpha}, \Delta_1 \equiv 1 \pmod{4}$;

www.ijera.com

$$= \left(1 + (-1)^{\frac{1}{4}(\Delta_{1}+1)}\right) (\alpha - \boldsymbol{\mathfrak{E}} - 1)^{\frac{1}{2}\boldsymbol{\mathfrak{E}} - 1}, \text{ if } 2|\boldsymbol{\mathfrak{E}},$$

$$\alpha \ge \boldsymbol{\mathfrak{E}} + 1, \ 2l\alpha, \ \Delta_{1} \equiv -1 \pmod{4}.$$

$$= 2^{\frac{1}{2}\alpha + 2}, \text{ if } 2l\boldsymbol{\mathfrak{E}}, \ 0 \le \alpha \le \boldsymbol{\mathfrak{E}} - 3, \ 2|\alpha,$$

$$m \equiv a \pmod{8};$$

$$= 0, \text{ if } 2l\boldsymbol{\mathfrak{E}}, \ 0 \le \alpha \le \boldsymbol{\mathfrak{E}} - 3, \ 2|\alpha,$$

$$m \neq a \pmod{8};$$

$$= \left(1 + (-1)^{\frac{1}{4}(m-\alpha)}\right) 2^{\frac{1}{2}(\boldsymbol{\mathfrak{E}} - 1)}, \text{ if } 2l\boldsymbol{\mathfrak{E}}, \ \alpha \ge \boldsymbol{\mathfrak{E}} - 1,$$

$$2|\alpha, m \equiv \alpha \pmod{8};$$

$$\chi_{2} = \left(1 + (-1)^{\frac{1}{4}(m+\alpha) + \frac{1}{2}(m-\Delta_{1}\alpha)}\right) 2^{\frac{1}{2}(\boldsymbol{\mathfrak{E}} - 1)}, \text{ if } 2l\boldsymbol{\mathfrak{E}},$$

$$\alpha \ge \boldsymbol{\mathfrak{E}} - 1, \ 2|\alpha, m \equiv -\alpha \pmod{4};$$

$$= \left(1 + (-1)^{\frac{1}{4}(m-\Delta_{1}\alpha)}\right) 2^{\frac{1}{2}(\boldsymbol{\mathfrak{E}} - 1)}, \text{ if } 2l\boldsymbol{\mathfrak{E}}, \ \alpha \ge \boldsymbol{\mathfrak{E}},$$

$$2l\alpha,$$

$$m \equiv \Delta_{1}a \pmod{4};$$

$$= \left(1 + (-1)^{\frac{1}{4}(m+\Delta_1 a) + \frac{1}{2}(m-a)}\right) 2^{\frac{1}{2}(\mathfrak{B}-1)}, \text{ if } 2\mathfrak{I}\mathfrak{B},$$
$$\alpha \ge \mathfrak{B},$$

 $2\mathbf{i}\alpha$, $m \equiv -\Delta_1 a \pmod{4}$.

$$\begin{split} \chi_p &= \left(1 + \left(\frac{p^{-\beta} na}{p} \right) \right) p^{\frac{1}{2}\beta}, \text{ if } l \geq \beta + 1, 2 \mid \beta; \\ &= 0, \qquad \text{if } l \geq \beta + 1, 2 \natural \beta; \\ &= \left(1 - \left(\frac{-p^{-l}\Delta}{p} \right) \frac{1}{p} \right) \left\{ 1 + \left(1 + \left(\frac{-p^{-l}\Delta}{p} \right) \right) \frac{\beta - l}{2} \right\} p^{l/2} \\ , \qquad \text{if } l \leq \beta, 2 \mid l, 2 \mid \beta; \\ &= \left(1 - \left(\frac{-p^{-l}\Delta}{p} \right) \frac{1}{p} \right) \left(1 + \left(\frac{-p^{-l}\Delta}{p} \right) \right) \frac{\beta - l + 1}{2} p^{l/2}, \\ &\text{if } l \leq \beta, 2 \mid l, 2 \nmid \beta; \\ &= \left\{ 1 + \left(\frac{p^{-l}\Delta}{p} \right)^{\beta + 1} \left(\frac{p^{-(\beta + l)} na\Delta}{p} \right) \right\} p^{\frac{1}{2}(l-1)}, \\ &\text{if } l \leq \beta, 2 \nmid l. \end{split}$$

III. Basic results

The set of forms with discriminant -80 splits into to genera of forms and each genus consists two reduced classes of forms which are respectively

$$\begin{aligned} f_1 &= 3x_1^2 + 2x_1x_2 + 7x_2^2, \quad f_2 &= 3x_1^2 - 2x_1x_2 + 7x_2^2 \\ &\text{and} \\ f_3 &= x_1^2 + 20x_2^2, \quad f_4 &= 4x_1^2 + 5x_2^2. \end{aligned}$$

P. Kaplan and K.S. Wiliams [6] have obtained formulae for the number of representations of an even positive integer *n* by the forms f_3 and f_4 . It is obvious that

$$r(n; f_1) = r(n; f_2)$$

Thus by Siegel's theorem

$$r(n; f_1) = r(n; f_2) = \frac{1}{2}\rho(n; f_1).$$

The function $\rho(n; f_1)$ may be calculated by the Lemma 2. So we have

Theorem 1. Let $n = 2^{\alpha} 5^{\beta} u$, (u, 10) = 1. Then

$$\begin{split} r(n;f_1) &= r(n;f_2) = \frac{1}{2} \left(1 - \left(\frac{u}{5} \right) \right) \sum_{v \mid u} \left(\frac{-5}{v} \right) \\ \text{for } \alpha &= 0, \ u \equiv 3 \pmod{4} \,, \end{split}$$

$$= \left(1 - (-1)^{\alpha} \left(\frac{u}{5}\right)\right) \sum_{\nu|u} \left(\frac{-5}{\nu}\right)$$

for $2|\alpha, \alpha \ge 2, u \equiv 3 \pmod{4}$,
or
for $\alpha \ge 2, 2!\alpha$,
 $u \equiv 1 \pmod{4}$,

=0 otherwise.

The set of forms with discriminant -128 splits into two genera of forms and each genus consists two reduced classes of forms which are respectively

$$f_5 = 3x_1^2 + 2x_1x_2 + 11x_2^2$$
, $f_6 = 3x_1^2 - 2x_1x_2 + 11x_2^2$
and
 $f_6 = 3x_1^2 - 2x_1x_2 + 11x_2^2$

 $f_7 = x_1^2 + 32x_2^2$, $f_8 = 4x_1^2 + 4x_1x_2 + 9x_2^2$. P. Kaplan and K.S. Williams [8] have obtained formulae for the number of representations of an even positive integer *n* by the forms f_6 and f_7 . It is obvious that

is obvious that

$$r(n; f_5) = r(n; f_6).$$

Thus by Siegel's theorem

$$r(n; f_5) = r(n; f_6) = \frac{1}{2}\rho(n; f_5)$$

The function $\rho(n; f_5)$ can be calculated by the Lemma 2.

So we have

Theorem 2. Let $n = 2^{\alpha} u$, (u, 2) = 1. Then $r(n; f_5) = r(n; f_6) = \sum \left(\frac{-2}{-2}\right)$ for $\alpha = 0$,

$$V(n, f_5) = V(n, f_6) = \sum_{v|u} \left(\frac{1}{v}\right)^{101} \alpha$$

 $u \equiv 3 \pmod{8},$

$$= 2 \sum_{\nu|u} \left(\frac{-2}{\nu}\right) \quad \text{for} \quad \alpha = 2, \ u \equiv 3 \pmod{8},$$

and

for $\alpha \ge 4$, $u \equiv 1 \pmod{8}$, or $u \equiv 3 \pmod{8}$,

=0 otherwise.

www.ijera.com

References

- [1] C.L. Siegel, Uber die analytische theorie der quadratischen formen. Annals of mathematics, 36, 1935, 527-606.
- [2] K.G. Ramanathan, On the analytic theory of quadratic forms, Acta Arithmetica, 21, 1972, 423-436.
- [3] T.V. Vepkhvadze, On a formula of Siegel, Acta Arithmetica, 40, 1981/82, 125-142 (in Russian).
- [4] T.V.Vepkhvadze, The representation of numbers by positive Gaussian binary quadratic forms. Trudy Razmadze Tbilissi Mathematical Institute 40, 1971, 21-58 (in Russian).
- [5] T. Vepkhvadze, Modular properties of thetafunctions and representation of numbers by positive quadratic forms. Georgian Mathematical Journal, 4, 1997, 385-400.
- [6] F. Van der Blij, Binary quadratic forms of discriminant – 23, Indagationes Mathematicae, 14, 1952, 489-503.
- [7] G.A. Lomadze, On the representation of numbers by binary diagonal quadratic forms, Mathematical sbornik, 68, 119, 1965, 283-312 (in Russian).
- [8] P. Kaplan and K.S. Williams, On the number of representations of a positive integer by a binary quadratic form. Acta Arithmetica, 114, 1, 2004, 87-98.